Investigation of the optical properties of LiTi$_2$O$_4$ and Li$_4$Ti$_5$O$_{12}$ spinel films by spectroscopic ellipsometry

MINGLIN ZHAO, JIE LIAN, YANLI JIA, KUI JIN, LIPING XU, ZHIGAO HU, XIULUN YANG, AND SHISHOU KANG

1School of Information Science and Engineering, Shandong University, Jinan 250100, Shandong, China
2National Lab for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, China
4School of Physics, Shandong University, Jinan 250100, Shandong, China
*jieliansdu@163.com

Abstract: The spinel lithium titanates materials Li$_4$Ti$_5$O$_{12}$ and LiTi$_2$O$_4$ were fabricated by pulsed laser deposition. High quality and single phase thin films were successfully grown, thus opening the door for a systematic investigation of the optical properties of the spinel system Li$_{1+x}$Ti$_{2-x}$O$_4$ (0 ≤ x ≤ 1/3). The microstructure of Li$_{1+x}$Ti$_{2-x}$O$_4$ films were characterized by X-ray diffraction and atomic force microscope. The optical properties of the films were studied by spectroscopic ellipsometry at room temperature. The refractive index, extinction coefficient, and the thickness of the films were obtained by fitting the experimental data over the entire measured wavelength range. The results show that the two spinel oxides exhibit absolutely different dispersion trends in the visible region. The optical band gap of Li$_4$Ti$_5$O$_{12}$ is about 3.14eV. The crystal-field energy splitting of LiTi$_2$O$_4$ is about 2.09eV between the eg and the t$_{2g}$ orbitals.

© 2016 Optical Society of America

OCIS codes: (160.4760) Optical properties; (310.6860) Thin films, optical properties; (160.4670) Optical materials; (240.2130) Ellipsometry and polarimetry.

References and links

1. Introduction

Transition-metal oxides crystallizing in the spinel structure have generated great interest due to rich physical phenomena such as high-temperature superconductor, ferrimagnetism, metal-insulator transition and so on [1–4]. As one of those transition metal oxides, the spinel system Li_{1+x}Ti_{2-x}O_{4} (0 ≤ x ≤ 1/3) has attracted much attention following the discovery by Johnston et al [5]. The initial member LiTi_{2}O_{4}, the only known oxide spinel superconductor, has a superconducting transition temperature (Tc) of 13.7K for bulk materials [5] and display Tc of about 11K for thin films [6,7]. The ending member Li_{1/3}Ti_{5/3}O_{4} is a most promising anode material for Li-ion battery due to its high reaction rate of lithium insertion and extraction [8–10]. The disappearance of superconductivity with increasing x is correlated with anomalous changes in the lattice parameter with composition and is attributed to the occurrence of a composition-induced metal-semiconductor transition at x=0.1 from electrical resistivity
measurements [2]. The metal-semiconductor transition is due to a disproportionation into Li-rich and Li-poor compositions at the grain boundaries [11]. Dalton et al [12] suggested that all members of Li_{1+x}Ti_{2-x}O_4 (LTO) have a cubic symmetry with the space group of Fd3m, where the 8a tetrahedral positions are occupied entirely by lithium ions whereas the 16d octahedral sites are randomly occupied by (x) lithium ions and (2-x) titanium ions per formula unit. LTO films were produced by means of various techniques, such as solid-state reaction, thermal processes, sol-gel method, RF magnetron sputtering method and pulsed laser deposition [13–17], and mostly LTO films are utilized in polycrystalline forms [18]. The thermal, electrical and magnetic properties have been extensively investigated for decades. However, the optical research reports of LTO films are few, due to the lack of the single crystals and high quality thin films. In recent years, some researches have been reported on optical properties of Li_4Ti_5O_{12} [19–21]. But the analysis on the optical properties of LiTi_2O_4 film still remain unreported. We have successfully grown high quality single crystalline-like epitaxial LTO thin films. Thus, we could systematic investigate and contrast the optical properties of the two kinds of Li_{1+x}Ti_{2-x}O_4 films for the first time.

In the present paper, LTO thin films were prepared by pulsed laser deposition (PLD) on MgAl_2O_4 (001) substrates. X-ray diffraction (XRD) and atomic force microscopy (AFM) were performed to characterize the microstructure and the surface morphology of the films. We report on ellipsometric measurements of the LTO films in the visible region. Cauchy dispersion function and Drude-Lorentz dispersion function were successfully used to describe the optical properties of Li_4Ti_5O_{12} and LiTi_2O_4, respectively. The optical interband transitions of LiTi_2O_4 have been explicated. The results show that the optical properties of the two LTO films are absolutely different.

2. Experimental method

The Li_4Ti_5O_{12} and LiTi_2O_4 thin films were epitaxially grown on (001)-oriented MgAl_2O_4 substrates via pulsed laser deposition technique in an ultrahigh-vacuum chamber. By controlling the oxygen partial pressure during deposition, we obtained the two end members of the spinel-phase system Li_{1+x}Ti_{2-x}O_4 (0 ≤ x ≤ 1/3) from a single target. The details of the preparation of the thin films can be found elsewhere [6,7,22]. That is, starting with a Li:Ti ratio of 4:5 in the target, a ratio of 1:2 is obtained in the film at low oxygen partial pressures. This effect is discussed in Ref. 16. The LiTi_2O_4 thin film used in this study show Tc of ~11K with narrow transition widths of <0.5K. The microstructure analyses of the films were carried out by X-ray diffraction (D8 Advance, Bruker AXS with Cu-Kα radiation). The surface morphology was analysed by atomic force microscope (NaioAFM, Nanosurf, Switzerland) in tapping mode.

Spectroscopic ellipsometry measurement of Li_4Ti_5O_{12} was recorded with a GES5 Sopra made rotating polarizer spectroscopic ellipsometer, in the wavelength 300-800nm. The ellipsometric measurement of LiTi_2O_4 was carried out using ultraviolet–near infrared spectroscopic ellipsometry (V-VASE by J. A. Woollam, Inc.), in the wavelength 300-2500nm. All the spectra were taken at an angle of incidence (ϕ) of 75° and all the calculations were performed using the Winelli software. Ellipsometry does not directly measure the optical constants or the film thickness, but two ellipsometric angles, Δ and ψ. From the software Winelli, we can get tan(ψ) and cos(Δ), as well as the ellipsometric parameters cos(2ψ) and sin(2ψ)cos(Δ), as output. These angles describe the amplitude and phase of the light, which were changed after reflection from a sample. This change is measured as the ratio ρ (= r_p/r_s) of the p (parallel) and s (perpendicular) field components of the light beam defined with respect to the plane of incidence of the sample. The relation between ρ and the optical constants is given by:
\[\rho = \tan(\psi) \exp(i\Delta) = \frac{r_1 + r_2 \exp(-i\delta)}{1 + r_1 r_2 \exp(-i\delta)} \times \frac{1 + r_1 r_2 \exp(-i\delta)}{r_1 + r_2 \exp(-i\delta)} = f(n_1, n_2, n, \lambda, d) \] (1)

By assuming a suitable optical model of the films and finding the best match via a least-square fitting calculation, the optical constants of LTO films, which is the function of wavelength, can be determined.

3. Results and discussion

3.1 Microstructure analyses of the LTO

The surface morphology of the MgAl\(_2\)O\(_4\) substrate, LiTi\(_2\)O\(_4\) thin film and Li\(_4\)Ti\(_5\)O\(_12\) is shown in Fig. 1. Step and terrace structure is clearly observed in MgAl\(_2\)O\(_4\) substrate. The grown LiTi\(_2\)O\(_4\) thin film shows a rather smooth epitaxial thin film surface. While, rougher film morphology was seen in Li\(_4\)Ti\(_5\)O\(_12\) thin film. As presented in Fig. 2, the XRD structure analysis indicated that both LiTi\(_2\)O\(_4\) and Li\(_4\)Ti\(_5\)O\(_12\) thin films were single phase, and the spinel phase reflections were epitaxially matched to the spinel single phase substrate. The full width at half maximum of (004) peaks for LiTi\(_2\)O\(_4\) and Li\(_4\)Ti\(_5\)O\(_12\) are about 0.142 degree and 0.181 degree, respectively, which reveals that both thin films exhibit good orientation. The XRD patterns of the two materials look similar, but the (004) peak of LiTi\(_2\)O\(_4\) (2\(\theta\) = 43.06°) clearly shifts to a lower 2\(\theta\) angle compared with that of Li\(_4\)Ti\(_5\)O\(_12\) (2\(\theta\) = 43.48°). Which is due to the fact that spinel LiTi\(_2\)O\(_4\) has a bulk room temperature lattice parameter of \(a = 8.405\) Å and Li\(_4\)Ti\(_5\)O\(_12\) has \(a = 8.359\) Å, hence there is a larger compressive lattice mismatch with the spinel.
MgAl_2O_4 substrate (a = 8.08Å). As mentioned above, we can confirm that the quality of the two films is excellent.

3.2 Ellipsometry analysis of the LTO

Table 1. The best fitting parameters in Cauchy model for the Li_4Ti_5O_12 film.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cauchy</td>
<td>2.1123</td>
<td>0.0389</td>
<td>1.0275E-3</td>
<td>0.0181</td>
<td>5.0819E-3</td>
<td>-2.2582E-4</td>
</tr>
</tbody>
</table>

Fig. 3. (a) Measured (dotted) and fitted (lines) ellipsometric spectra cos(2\(\psi \)) and sin(2\(\psi \))cos(\(\Delta \)) of Li_4Ti_5O_12 thin film at the incident angle of 75° (b) Refractive index and extinction coefficient for Li_4Ti_5O_12 thin film.

The measured ellipsometric angles and corresponding fitting results of Li_4Ti_5O_12 thin film are shown in Fig. 3(a). According to the analysis of AFM, Li_4Ti_5O_12 thin film has a rougher surface. The ellipsometric data are very sensitive to surface condition, so a surface roughness layer was added in the model. A four-layer model (air/roughness/Li_4Ti_5O_12/substrate) is utilized to describe the Li_4Ti_5O_12 thin film itself. The surface roughness layer was modeled by Bruggeman effective-medium approximation (EMA) with a mixture of the material (50%) and voids (50%). In order to determine the optical constants of LTO films, the MgAl_2O_4 substrate was measured first by ellipsometry. The optical response of the substrate was described using a model of Cauchy to ensure the Kramer-Kronig consistency. Using the information of the substrate, the ellipsometric spectra were evaluated. A Cauchy dispersion model is adopted to describe the optical constants of Li_4Ti_5O_12 thin film. The expression is given by:

\[
\begin{align*}
n(\lambda) &= A + B/\lambda^2 + C/\lambda^4 \\
k(\lambda) &= D/\lambda + E/\lambda^3 + F/\lambda^5
\end{align*}
\]

Where A, B, C, D, E, F are the model parameters. The best fitting parameters of the model is displayed in Table 1. The refractive index decreases slowly with the increase of wavelength according to the Cauchy model in Fig. 3(b). The thickness of the film and the roughness layer are 86.13nm and 4.61nm, respectively.
The optical band gap E_g of the Li$_4$Ti$_5$O$_{12}$ film was determined using the extinction coefficient from the following Tauc expression:

$$E - E_g = \left(\frac{4\pi\kappa}{\lambda} \frac{h\nu}{B} \right)^n$$ (4)

Where E is the photon energy ($\equiv h\nu$), B is a constant, $\alpha = 4\pi\kappa/\lambda$ is the absorption coefficient and κ is the extinction coefficient. The exponent n depends on the type of optical transition [23]. Depending on the type of electronic transition in bulk semiconductors, the exponent is $n = 1/2$, 2, 1/3 and 2/3 for indirect allowed, direct allowed, indirect forbidden and direct forbidden transitions, respectively. Li$_4$Ti$_5$O$_{12}$ has a direct bandgap, we plotted the curve of $(\alpha h\nu)^2$ vs $h\nu$ and extrapolated the linear segments of the curve to get the optical bandgap. As shown in Fig. 4, the optical bandgap is about 3.14 ± 0.12 eV. Li$_4$Ti$_5$O$_{12}$ is an insulating nature material, in which the bandgap opens between the occupied O$_{2p}$ valance states and empty Ti$_{3d}$ conduction band. Li$_4$Ti$_5$O$_{12}$ is a wide band gap semiconductor and its bandgap value varies widely in the literature. Although our calculated bandgap value significantly exceed the theoretical bandgap values of 2.0 eV [24] and 2.3 eV [25], there are, nevertheless, reports that the bandgap value of Li$_4$Ti$_5$O$_{12}$ is about 3 eV [26] and 3.1 eV [27], which is in good agreement with our result.
Fig. 5. (a) Measured (line-dots) and fitted (lines) ellipsometric spectra \(\cos(2\psi) \) and \(\sin(2\psi) \cos(\Delta) \) of \(\text{LiTi}_2\text{O}_4 \) thin film at the incident angle of 75°. (b) Refractive index and extinction coefficient shown for \(\text{LiTi}_2\text{O}_4 \) thin film at room temperature, the inset shows the second derivative of extinction coefficient.

Table 2. The best fitting parameters in the Lorentz oscillators and Drude model for the \(\text{LiTi}_2\text{O}_4 \) film.

<table>
<thead>
<tr>
<th>Lorentz</th>
<th>A</th>
<th>(L_0) (um)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak 1</td>
<td>4.018705</td>
<td>1.655550</td>
<td>1.573365</td>
</tr>
<tr>
<td>Peak 2</td>
<td>0.674966</td>
<td>1.057313</td>
<td>0.633824</td>
</tr>
<tr>
<td>Peak 3</td>
<td>0.331477</td>
<td>0.379688</td>
<td>0.064937</td>
</tr>
<tr>
<td>Peak 4</td>
<td>0.856379</td>
<td>0.286395</td>
<td>2.6694E-3</td>
</tr>
<tr>
<td>Drude</td>
<td>P</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>2.332912</td>
<td>0.176578</td>
<td>1.696921</td>
</tr>
</tbody>
</table>

In contrast to \(\text{Li}_4\text{Ti}_5\text{O}_{12} \), the valence bands of \(\text{LiTi}_2\text{O}_4 \) are mainly composed of the O 2p states, with partial contributions from Ti 3d orbits. The conduction bands are primarily assigned to the Ti 3d states, and the partially filled Ti 3d states cause \(\text{LiTi}_2\text{O}_4 \) possessing metallic characteristics [28–31]. Ellipsometry data of \(\text{LiTi}_2\text{O}_4 \) from 0.496 to 4.13 eV (300–2500 nm) are shown in Fig. 5(a). By introducing the Drude-Lorentz dispersion model to describe the optical constants of \(\text{LiTi}_2\text{O}_4 \) thin film, the simulated spectra are in excellent agreement with the measured spectra. The result of optical constants confirms that the spinel \(\text{LiTi}_2\text{O}_4 \) is a metallic compound. The Drude-Lorentz dispersion model is given by:

\[
\text{Drude: } \varepsilon_r = P - C^2 \frac{\lambda^2}{(\lambda^2 - L_0^2)^2 + \gamma^2 \lambda^2} (6) \\
\varepsilon_r = B \frac{C^2 \lambda^2}{(1 + \lambda^2 B^2)} (7)
\]

\[
\text{Lorentz: } \varepsilon_r = A^2 \frac{\lambda^2}{(\lambda^2 - L_0^2)^2 + \gamma^2 \lambda^2} (7) \\
\varepsilon_r = A \lambda^2 \gamma \lambda^2 \frac{(\lambda^2 - L_0^2)^2 + \gamma^2 \lambda^2} (8)
\]

where P is the polarization; B and C are the mean free path and the inverse of the plasma wavelength, respectively; A, L_0, \(\gamma \) introduce the intensity, the central wavelength and the width of the peak of Lorentz oscillator. A four-layer model (air/roughness/\(\text{LiTi}_2\text{O}_4 \)/substrate) is used in this situation. To obtain more precise optical constants of \(\text{LiTi}_2\text{O}_4 \), the influence of the roughness layer is eliminated. The surface roughness layer was described by
Bruggeman effective-medium approximation (EMA) with a mixing fraction of 50%, and the thickness of roughness layer is fixed as 1.3nm (originated from AFM test). The best fitting parameters are listed in Table 2, and the thickness of LiTi₂O₄ thin film is 194.8nm. Fig. 5(b) displays the optical constants of LiTi₂O₄ at room temperature as a function of energy, and the inset shows the second derivative spectra of extinction coefficient derived from the numerical calculation of the corresponding optical constants. In the spectrum of the second derivative of extinction coefficient, we can observe that optical transitions labeled X1, X2 and X3 are located at about 0.74eV, 1.17eV and 3.26eV, respectively.

The interband transitions in spinel material are very complex, mainly originate from three types of electronic transition process: intervalence charge transfer (IVCT) transitions, intersublattice charge transfer (ISCT) transitions, crystal field (CF) transitions. IVCT transitions are transitions in which an electron, through optical excitation, is transferred from one cation to a neighboring cation. When the two cations are on different crystallographic sites, IVCT transitions are traditionally called ISCT transitions. CF transitions is a single-ion transition, while the former two transitions involve two cations. For normal spinel materials CoFe₂O₄, the absorption feature at 0.83eV corresponds to a CF transition within the spin state of tetrahedrally coordinated Co²⁺ ions, namely between ⁴A₂ and ⁴T₁ bands, Co²⁺ on A site, as reported by Fontijn et al [32]. The tetrahedral sites in LiTi₂O₄ are occupied by lithium ions. The behaviour of Li⁺ is similar to Co²⁺, so we attribute the X1 feature located below ~1eV to the CF transitions between ⁴A₂ and ⁴T₁ bands, which represent the ground state and the excited states, respectively, according to standard crystal-field theory [33]. The broad structures X2 and X3 are interpreted as being contributed by two similarly transitions, namely CT transitions involving O²⁻ and octahedral Ti³⁺/Ti⁴⁺ ions, i.e., O²⁻(2p) → Ti³⁺/Ti⁴⁺(3d) for 1.17 (t₂g) and 3.26eV (e_g) structures, similar to spinel LiNiₓMn₂₋ₓO₄ reported by Kim [34]. The T₂g orbital is split by the cubic component of the crystal field into t₂g orbitals and e_g orbitals. The t₂g band is half-filled while the higher-lying e_g band is empty. The broader nature of the t₂g energy-band width compared to the e_g band [30] is reflected in the broader Lorentz oscillator parameter γ shown in Table 2. From the difference between the energies of the CT transitions (X2, X3), the energy splitting between the t₂g and the e_g orbitals was calculated to amount to 2.09eV. For the ideal cubic spinel structure, the splitting energy gap between t₂g and the e_g orbitals is about 1.36eV [29]. However, for the real structure, a small octahedral distortion leads to a broadening of the gap and the value extends to 2.28eV [30]. Our calculated value of the gap is a little smaller than the theoretical reported value. The difference is in the acceptable range.

4. Summary

Li₁₊ₓTi₂₋ₓO₄ with x = 0 and x = 1/3 thin films were deposited onto MgAl₂O₄ substrates by pulsed laser deposition, and their optical constants were derived using spectroscopic ellipsometry. Good model fits for LiₓTi₃O₁₂ and LiTi₂O₄ were achieved using Cauchy dispersion model and Drude-Lorentz dispersion model, respectively. The analysis of the extinction coefficient of LiₓTi₃O₁₂ indicates a wide bandgap of about 3.14eV. To the best of our knowledge, the optical constants of LiTi₂O₄ was observed for the first time, and we try to explain interband transitions of normal state of LiTi₂O₄. The crystal-field splitting between the e_g and the t₂g states of the octahedral Ti³⁺/Ti⁴⁺ ion estimated from the assigned charge transfer transitions is about 2.09eV.

Funding

National Key Basic Research Program of China (2015CB921003) and the Fund grants No.2016JC027.
Acknowledgments

M. L. Zhao acknowledges the assistance from Ge He and Yujun Shi for proofreading and useful discussion.